
Christian Schulte1

Guido Tack2

Mikael Z. Lagerkvist1

1 KTH – Royal Institute of Technology, Sweden
2 Saarland University, Germany

Gecode
 Generic constraint development environment

www.gecode.org

 Open source C++ library
 open programming interfaces

 free MIT license

 portable whatever hardware/software environment

 accessible extensively documented

 efficient competetive performance (space/time)

see webpage for comparisons

 Gecode 2.0.o to be released end of October

http://www.gecode.org/

Basic Facts

Open Platform
 Research

 extensibility, openness

 Education
 modern free platform for teaching CP

 Deployment
 do whatever you want

 Efficiency
 be useful

Gecode Architecture
 Generic kernel

 kernel core

 domain-independent abstractions (branching, propagators, …)

 Modules
 typically, one per variable domain (as many as you want)

 finite domain integers, finite sets, complete finite sets

 search engines

 modeling support

 serialization

 …

Search
 Search based on recomputation

 expressive for programming search [Schulte, 2002]

 adaptive and batch recomputation for efficiency

 Standard engines
 depth-first search

 limited discrepancy search

 branch-and-bound optimization

 DFS restart optimization

Finite Domain Integers
 Use generic kernel interfaces (no special pet)

 Standard constraints
 arithmetic, Boolean, and linear constraints

 reified versions of the above

 Global constraints
 all-different, global cardinality, count,

element, regular, lexicographic ordering,
inverse, sortedness, cumulatives, circuit, channel,
extensional (table)

 typically supporting various consistency levels

Finite Sets
Complete Finite Sets
 Two variable kinds

 bounds and cardinality approximation [Puget, SPICIS 1992] [Gervet,

Constraints 1997]

 complete domain representation [Hawkins et al., JAIR 2005]

 Standard constraints
 set relations and operations

 Global constraints
 convexity, distinctness, atmost, selection, channel

 Compiler for generating propagators from formulas [CP

2006]

Modeling
 Orthogonal to rest of system

 Natural representation of expressions
post(this, x + 3*y >= z);

post(this, tt(x & y | z));

regular(this, x, *(REG(0)+REG(1)));

 Matrices of variables

for (int i = 0; i < 9; ++i)

distinct(this, sudoku.row(i));

 Expressions, ...

Quality: Systematic Testing
 Extensive test-suite for all constraints in the system

 randomized tests

 good coverage (> 97%)

 Indispensable: users, reproducible research

We found many bugs, users did not
 one major bug since December 2005

 new release with fix within two days

Development
 First release 1.0.0, 12/6/2005

 small improvements, user requests, fixes quickly

 1.0.1, 3/1/2006

 1.1.0, 4/10/2006

 1.2.0, 6/20/2006 1.2.1, 7/19/2006 1.2.2, 7/25/2006

 1.3.0, 9/19/2006 1.3.1, 10/25/2006

 Next major release: 2.0.0, 10/31/2007
 support for incremental propagation: advisors [CP 2007]

 interface to MiniZinc [CP 2007]

 dramatically better 0/1 variables, many new constraints, complete set
variables, reflection, much improved documentation, scalability, …

 Some 1000 downloads a month (mirrors excluded)

Development: Code Size

0

20000

40000

60000

80000

100000

120000

1.0.0 1.0.1 1.1.0 1.2.0 1.2.1 1.2.2 1.3.0 1.3.1 2.0.0

lod

loc

 Gecode 1.0.0: 43 kloc, 21 klod

 Gecode 2.0.0: 73 kloc, 40 klod

Development: Speedup

 Gecode 2.0.0 > 20% speedup compared to Gecode 1.0.1
 based on some 20 benchmarks
 many: remain the same; some: twice as fast
 new features without any slowdown

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

1.1.0 1.2.0 1.2.1 1.2.2 1.3.0 1.3.1 2.0.0

Using Gecode

How to Use Gecode...
 Interfacing

 Java, MiniZinc, Ruby, Alice (SML), Python, ...

 Direct modeling and solving
 C++

 Adding
 propagators, branchings, variables, search engines

 not extending: based on well-documented programming
interfaces

 Research vehicle
 new variable domains and propagators, benchmarking, ...

Interfaces
 Gecode/J

 comprehensive Java interface used for education (we)

 MiniZinc (through FlatZinc) [CP 2007]
 Gecode/R

 modeling Ruby interface (Andreas Launilla, supported by
Google summer of code grant)

 AliceML (dialect of Standard ML)
 Gecode-bindings as a standard library (Smolka et al)

 GeOz
 project to integrate Gecode into Mozart/Oz environment

(AVISPA Group)
 Python, ...

Gecode/J
 Complete interface in Java

 modeling, propagators, branchings, etc

 provides barrier-free and complete approach

 released in lock step with Gecode

 Used in education

 KTH, Sweden

 Uppsala U, Sweden

 UCL, Belgium

 American U, Egypt

 Saarland U, Germany

 U Freiburg, Germany

Some Use Cases
 For users with background in CP

 Integrate CP technology

 companies (small): cheap access

 Extend CP

 QeCode: quantified constraints [Benedetti ea, IJCAI 2007, CSCP
2006]

 new variable domains CP(Graph), CP(Map): [Dooms ea, CP 2005]
[Zampelli ea, CP 2005]

 Realistic experimentation platform

 randomization in tail assignment [Otten ea, CP 2006]

 abstractions for non-deterministic search [Michel ea, CP 2006]

Modeling in Gecode
 Model structure

 subclass from class Space (node in search tree)

 constructor: create variables, post constraints & branchings

 two additional methods for copying (trivial)

 Solving model
 create instance of model

 pass to search engine, or apply search strategy

Toplevel Structure
#include "gecode/int.hh"
#include "gecode/search.hh"
#include "gecode/minimodel.hh"
using namespace Gecode;

class Queens : public Space {
protected:
IntVarArray q; // Position of queen

public:
Queens(int n) : q(this,n,0,n-1) {
... post constraints & branchings

}
... two additional methods for copying
... more methods (printing, etc)

};

int main(int argc, char* argv[]) {
... run model

}

setting the stage

Toplevel Structure
#include "gecode/int.hh"
#include "gecode/search.hh"
#include "gecode/minimodel.hh"
using namespace Gecode;

class Queens : public Space {
protected:
IntVarArray q; // Position of queen

public:
Queens(int n) : q(this,n,0,n-1) {
... post constraints & branchings

}
... two additional methods for copying
... more methods (printing, etc)

};

int main(int argc, char* argv[]) {
... run model

}

variables

Toplevel Structure
#include "gecode/int.hh"
#include "gecode/search.hh"
#include "gecode/minimodel.hh"
using namespace Gecode;

class Queens : public Space {
protected:
IntVarArray q; // Position of queen

public:
Queens(int n) : q(this,n,0,n-1) {
... post constraints & branchings

}
... two additional methods for copying
... more methods (printing, etc)

};

int main(int argc, char* argv[]) {
... run model

}

initialize variables

The Actual Model
class Queens : public Space {
protected:
IntVarArray q; // Position of queen

public:
Queens(int n) : q(this,n,0,n-1) {
for (int i = 0; i<n; i++)
for (int j = i+1; j<n; j++) {
post(this, q[i] != q[j]);
post(this, q[i]+i != q[j]+j);
post(this, q[i]-i != q[j]-j);

}
branch(this, q, INT_VAR_SIZE_MIN, INT_VAL_MIN);

}
...

};

Remaining Methods
class Queens : public Space {
...
// Constructor for cloning
Queens(bool share, Queens& s) : Space(share,s) {
q.update(this, share, s.q);

}
// Perform copying during cloning
virtual Space* copy(bool share) {
return new Queens(share,*this);

}
// Print solution
void print(void) {
std::cout << q << std::endl;

}
};

Solving
...
int main(int argc, char* argv[]) {
int n = atoi(argv[1]);
Queens* q = dfs(new Queens(n));
if (q != NULL)
q->print();

delete q;
return 0;

}

Using distinct
Queens(int n) : q(this,n,0,n-1) {
distinct(this, q);

IntArgs c(n);
for (int i=0; i<n; i++)

c[i] = i;
distinct(this, c, q);

for (int i=0; i<n; i++)
c[i] = -i;

distinct(this, c, q);
…

Using domain-consistent
distinct
Queens(int n) : q(this,n,0,n-1) {
distinct(this, q, ICL_DOM);

IntArgs c(n);
for (int i=0; i<n; i++)

c[i] = i;
distinct(this, c, q, ICL_DOM);

for (int i=0; i<n; i++)
c[i] = -i;

distinct(this, c, q, ICL_DOM);
…

More Programming
 Programming propagators and branchings

 straightforward object-oriented interfaces

 Programming new variable types
 system-specific aspects generated from simple specification

 only domain implementation required

 Programming search engines (exploration)
 based on spaces, similar to Oz [Schulte, CP 1997]

Contributions
 System contributions

 fully open design, particular: program variable domains

 also: systematic tests

 Model contributions
 organization of propagation

[Schulte, Stuckey, CP 2004] [Schulte, Stuckey, CoRR, submitted, 2006]

 views and iterators for generic propagators
[Schulte, Tack, CP 2005]

 automatic generation of set propagators
[Tack, Schulte, Smolka, CP 2006]

 advisors for incremental propagation
[Lagerkvist, Schulte, CP 2007]

 search based on recomputation

Never Ask Me...
 I have introduced XYZ in my paper...

...when will you implement it?

 You can do it yourself in Gecode
 simple, efficient, cheap

 We might even ship it with Gecode

 The community will actually use it

